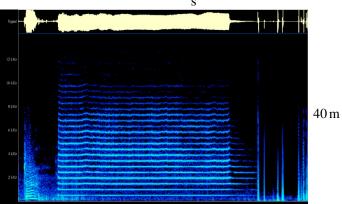
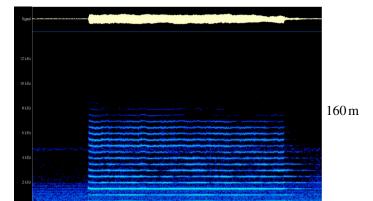

Frequency-analysis of a sound-signal at five distances, increasing from 20 - 320 m

This experiment verifies Ingvar Åstrand's discovery of the general entropy-law of nature (formulated $\Delta \lambda = h_{\varepsilon\pi} \cdot s$) that explains the radiation's constant dissipation($h_{\varepsilon\pi}$) as wave elongation($\Delta \lambda$) during its propagated distance(s).

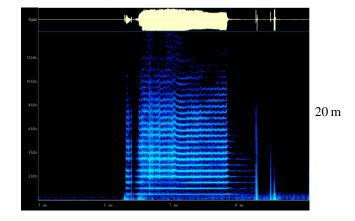
Soundwaves elongate($\Delta \lambda$) with the distance(s).

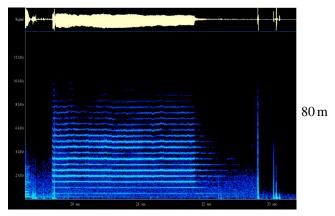
The general wave - displacement law is : $\frac{\Delta \lambda}{s} = h_{\varepsilon\pi}$

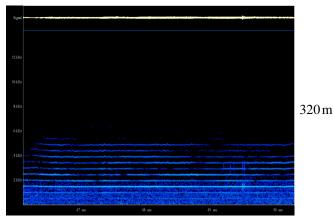

$$\Rightarrow \Delta \lambda = 6.6 - 3.2 = 3.4 \text{ cm}$$


$$\Rightarrow \Delta s = 320 - 20 \text{ m} = 3 \cdot 10^4 \text{ cm}$$

$$\Rightarrow h_{\varepsilon\pi} = \frac{3.4 \text{ cm}}{3 \cdot 10^4 \text{ cm}} \approx 1.1 \cdot 10^{-4} \approx 0.0001$$


So, the sound's entropy - constant is: $h_{e\pi} \approx 1 \cdot 10^{-4}$ - depending on temperature and viscosity of the air!


Soundwaves accelerate $\approx \frac{340 \text{ m/s} \cdot 10^{-4}}{\text{s}} \approx 3.4 \text{ cm/s}^2$



Ingvar Åstrand © 2005 - 2006.